11 research outputs found

    Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review

    Get PDF
    Capacitance detection is a universal transduction mechanism used in a wide variety of sensors and applications. It requires an electronic front-end converting the capacitance variation into another more convenient physical variable, ultimately determining the performance of the whole sensor. In this paper we present a comprehensive review of the different signal conditioning front-end topologies targeted in particular at sub-femtofarad resolution. Main design equations and analysis of the limits due to noise are reported in order to provide the designer with guidelines for choosing the most suitable topology according to the main design specifications, namely energy consumption, area occupation, measuring time and resolution. A data-driven comparison of the different solutions in literature is also carried out revealing that resolution, measuring time, area occupation and energy/conversion lower than 100 aF, 1 ms 0.1 mm2, and 100 pJ/conv. can be obtained by capacitance to digital topologies, which therefore allow to get the best compromise among all design specifications

    Different responses of mice and rats hippocampus CA1 pyramidal neurons to in vitro and in vivo-like inputs

    Get PDF
    The fundamental role of any neuron within a network is to transform complex spatiotemporal synaptic input patterns into individual output spikes. These spikes, in turn, act as inputs for other neurons in the network. Neurons must execute this function across a diverse range of physiological conditions, often based on species-specific traits. Therefore, it is crucial to determine the extent to which findings can be extrapolated between species and, ultimately, to humans. In this study, we employed a multidisciplinary approach to pinpoint the factors accounting for the observed electrophysiological differences between mice and rats, the two species most used in experimental and computational research. After analyzing the morphological properties of their hippocampal CA1 pyramidal cells, we conducted a statistical comparison of rat and mouse electrophysiological features in response to somatic current injections. This analysis aimed to uncover the parameters underlying these distinctions. Using a well-established computational workflow, we created ten distinct single-cell computational models of mouse CA1 pyramidal neurons, ready to be used in a full-scale hippocampal circuit. By comparing their responses to a variety of somatic and synaptic inputs with those of rat models, we generated experimentally testable hypotheses regarding species-specific differences in ion channel distribution, kinetics, and the electrophysiological mechanisms underlying their distinct responses to synaptic inputs during the behaviorally relevant Gamma and Sharp-Wave rhythms

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector

    No full text
    This paper introduces the electronic interface for a capacitive airborne particle matter detector. The proposed circuit relies on two matched ring oscillators and a mixer to detect the frequency difference induced by the deposition of a particle onto an interdigitated capacitor, which constitutes the load of one of the oscillators. The output of the mixer is digitized through a simple counter. In order to compensate the oscillation frequency offset of the two ring oscillators due to process and mismatch variations, a capacitive trimming circuit has been implemented. The sensor is connected to host through an I2C interface for communication and configuration. The sensor has been implemented using a standard 130-nm CMOS technology by STMicroelectronics and occupies 0.12-mm2 die area. Experimental measurements using talcum powder show a sensitivity of 60 kHz/fF and a 3σ resolution equal to 165 aF

    A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector

    No full text
    This paper introduces the electronic interface for a capacitive airborne particle matter detector. The proposed circuit relies on two matched ring oscillators and a mixer to detect the frequency difference induced by the deposition of a particle onto an interdigitated capacitor, which constitutes the load of one of the oscillators. The output of the mixer is digitized through a simple counter. In order to compensate the oscillation frequency offset of the two ring oscillators due to process and mismatch variations, a capacitive trimming circuit has been implemented. The sensor is connected to host through an I2C interface for communication and configuration. The sensor has been implemented using a standard 130-nm CMOS technology by STMicroelectronics and occupies 0.12-mm2 die area. Experimental measurements using talcum powder show a sensitivity of 60 kHz/fF and a 3σ resolution equal to 165 aF

    An Integrated Thermopile-Based Sensor with a Chopper-Stabilized Interface Circuit for Presence Detection

    No full text
    This paper presents a sensor-readout circuit system suitable for presence detection. The sensor consists of a miniaturized polysilicon thermopile, realized employing MEMS micromachining by STMicroelectronics, featuring a responsivity value equal to 180 V/W, with 13 ms response time. The readout circuit is implemented in a standard 130-nm CMOS process. As the sensor output signal behaves substantially as a DC, the interface circuit employs the chopper technique in order to minimize offset and noise contributions at low frequency, achieving a measured input referred offset standard deviation equal to 1.36 μ V. Measurements show that the presented system allows successfully detecting the presence of a person in a room standing at 5.5 m from the sensor. Furthermore, the correct operation of the system with moving targets, considering people either walking or running, was also demonstrated
    corecore